Le culbuto

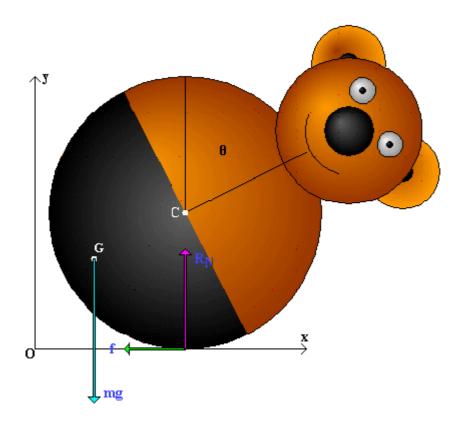
par Gilbert Gastebois

1. Description

Le culbuto est un jouet qui se relève quelque soit sa position de départ.

Il est constitué d'une partie sphérique qui contient un contrepoids et qui oscille sans glisser.

2. Schéma



- M Masse du culbuto
- m Masse du contrepoids
- J_C Moment d'inertie/C
- J_G Moment d'inertie/G
- R Rayon de la sphère
- C Centre de la sphère
- G Centre de gravité
- a = CG
- θ Angle d'inclinaison avec la verticale
- R_N Réaction normale du support
- f Force de frottement
- O Position d'équilibre du culbuto

y' = dy/dt

 $y'' = d^2y/dt^2$

3. Étude

3.1 Approche newtonienne.

Loi de Newton en rotation appliquée au centre $C: J_C \theta'' = \sum M_{F/C}$

Le repère lié à C n'est pas galiléen car C est accéléré. Cette accélération produit une pseudoforce $f_e = -M a_C$ agissant sur G

$$J_C \theta'' = M_{Mg} + M_f + M_{fr} + M_{fe}$$

$$J_C \theta'' = M_{Mg} + M_f + M_{fr} + M_{fe}$$
 $M_{RN} = 0$ et $M_{fr} = -k \theta'$ est un frottement visqueux

Dans le repère fixe xOy:

 $x_C = R\theta$ car la sphère roule sans glisser donc

$$V_{\text{Cx}} = x_{\text{c}} \, ' = R\theta \! ' \quad \text{et} \quad a_{\text{Cx}} = V_{\text{Cx}} \! ' = R\theta \! ' \! '$$

$$y_{\text{C}} = \ R \ donc \ \ a_{\text{Cy}} = 0 \qquad \qquad f_{\text{e}} = f_{\text{ex}} = \text{- M } a_{\text{Cx}} = \text{ - M } R\theta \text{''}$$

La deuxième loi de Newton donne : $M a_G = M g + f + R_N$

donc sur Ox : M
$$a_{Gx} = f_x = f$$

 $x_G = x_C$ - $a \sin \theta = R\theta$ - $a \sin \theta$ donc $V_{Gx} = x_{G'} = R\theta'$ - $a \cos \theta \theta'$ et $a_{Gx} = V_{Gx'} = R \theta''$ - $a \cos \theta \theta'' + a \sin \theta \theta'^2$

donc
$$f = f_x = M a_{Gx} = M (R \theta'' - a \cos \theta \theta'' + a \sin \theta \theta'^2)$$

$$J_C \theta'' = -M g a \sin \theta - f R - k \theta' - f_{ex} a \cos \theta$$

$$J_{C} \theta'' = -M g a \sin \theta - M (R^{2} \theta'' - a R \cos \theta \theta'' + a R \sin \theta \theta'^{2}) - k \theta' + M R \theta'' a \cos \theta$$

$$\theta'' = -(a R (\theta'^2 + g/R) \sin \theta + k/M \theta')/(J_c/M + R^2 - 2 a R \cos \theta)$$

En posant $h = k/(M R^2)$, on obtient :

$$\theta'' = -(a/R (\theta'^2 + g/R) \sin \theta + h \theta')/(J_C/(MR^2) + 1 - 2 a/R \cos \theta)$$

Cette équation doit être résolue numériquement.

3.2 Approche lagrangienne.

Lagrangien L du Système :

$$L = Ec - Ep = \frac{1}{2} J_G \theta'^2 + \frac{1}{2} M V_G^2 - M g (R - a \cos \theta) \qquad J_G = J_C - M a^2$$

$$x_G = x_C - a \sin \theta$$

 $x_C = R\theta$ car la sphère roule sans glisser

donc
$$V_{Gx} = x_G' = R\theta'$$
 - a $\cos \theta \theta'$

$$y_G = y_C - a \cos \theta = R - a \cos \theta$$

donc
$$V_{Gy} = y_G' = a \sin \theta \theta'$$

$$V_G^2 = V_{Gx}^2 + V_{Gy}^2 = (R^2 + a^2 - 2 \text{ a } R \cos \theta) \theta'^2$$

$$L=\frac{1}{2}\,M\left(J_G/M+R^2+a^2-2\;a\;R\;\cos\theta\right)\,\theta^{\prime 2}-M\;g\left(R-a\;\cos\theta\right) \qquad J_G=J_C-M\;a^2\quad donc$$

$$L = \frac{1}{2} M (J_c/M + R^2 - 2 a R \cos \theta) \theta'^2 - M g (R - a \cos \theta)$$

Équation de Lagrange : $d(dL/d\theta')/dt - dL/d\theta = -k \theta'$ (avec frottement visqueux)

$$d(dL/d\theta')/dt = M (J_c/M + R^2 - 2 a R \cos \theta) \theta'' + 2 M a R \sin \theta \theta'^2$$

$$dL/d\theta = M \ a \ R \sin \theta \ \theta'^2 - M \ g \ a \sin \theta$$

$$\theta'' = -\left(a R \left(\theta'^2 + g/R\right) \sin \theta + k/M \theta'\right) / (J_c/M + R^2 - 2 a R \cos \theta)$$

En posant $h = k/(M R^2)$, on obtient :

$$\theta'' = -(a/R (\theta'^2 + g/R) \sin \theta + h \theta')/(J_C/(MR^2) + 1 - 2 a/R \cos \theta)$$

Cette équation doit être résolue numériquement.

3.3 Exemples

Contrepoids hémisphérique ($m \simeq M$).

Pour un contrepoids hémisphérique homogène, on a :

$$J_c = J_0 + 2 \text{ m R}^2/5 \simeq J_0 + 2 \text{ M R}^2/5$$
 et $a = 3 \text{ R}/8$ J_0 : Moment d'inertie de la coque/C $\theta'' = -(3/8 \sin \theta (\theta'^2 + g/R) + h \theta')/(J_0/(MR^2) + 7/5 - 3/4 \cos \theta)$

Contrepoids quasi ponctuel ($m \simeq M$).

C'est le cas choisi pour l'animation.

$$J_c = \ J_0 + m \ a^2 \simeq \ J_0 + M \ a^2 \qquad \qquad J_0 : Moment \ d'inertie \ de \ la \ coque/C$$

$$\theta'' = -(a/R \sin \theta (\theta'^2 + g/R) + h \theta')/(J_0/(MR^2) + 1 + a^2/R^2 - 2 a/R \cos \theta)$$